Ovatars: Using Patient-Derived Xenografts for Selecting Best Therapies

Paul Haluska M.D., Ph.D.
Co-Director, Phase I Program
Associate Professor of Oncology
Mayo Clinic-Rochester

PRESENTED AT THE 2014 ASCO ANNUAL MEETING. PRESENTED DATA IS THE PROPERTY OF THE AUTHOR.

Learning Objectives

After reading and reviewing this material, the participant should be able to:

- Define PDX and Avatar Models
- Understand how Avatar models may be used for drug development
- Understand why Ovarian Cancer may be a good cancer type for using Avatars
- Explain how Avatars are being used to direct therapy and individualize therapy.

@Ovatars

PRESENTED AT:

Presented by: Paul Haluska M.D., Ph.D.

Outline

- Project Overview
- Characterization
 - Gross, Histological, Molecular
- Novel Therapy development
 - PARP inhibitor
 - Use of US for monitoring
 - Potential for Collaborations
- Avatar Directed Therapy

Barriers to Better Ovarian Cancer Outcomes

- Screening
 - Neither common nor rare
 - Imaging/serum markers- disappointing
- Vague symptoms
 - No longer the 'silent killer', but...
- Late stage at diagnosis
- Treatment not customized

Ovarian Avatar Project

PRESENTED AT:

Presented by: Paul Haluska M.D., Ph.D.

Definitions

- Xenografts- tumors from one species implanted in another
 - Most commonly human in mouse
- Orthotopic- in the natural location
- Patient-derived xenografts- xenografts implanted directly from patients (i.e.- no plastic)
- Avatars- Orthotopic, treatment-naïve PDX's
- Ovatars- Our Ovarian Avatar modeling system

Engraftment & Tumor Diversity

Avatar Program Status

PRESENTED AT:

Presented by: Paul Haluska M.D., Ph.D.

Histological Comparison: Patient →Xenograft

Weroha SJ, et al . Tumorgrafts as In Vivo Surrogates for Women with Ovarian Cancer. Clin Cancer Res. 2014 Feb 11.

Presented by: Paul Haluska M.D., Ph.D.

Ovatars recapitulate heterogeneity of donor patient tumors

Ovarian avatars recapitulate clinical complications of donor patient tumors

Criticism:

"While cell lines are not predictive of therapeutic response, neither are xenografts"

ASCO
50 ANNUAL
SCIENCE & SOCIETY

PRESENTED AT THE 2014 ASCO ANNUAL MEETING, PRESENTED DATA IS THE PROPERTY OF THE AUTHOR.

Avatar Predictive for Platinum Response

PH053

- -Stage IIIC serous OC
- -Received TC x 6
- -Recurred within 6 mo

PH015

- -Stage IIIC serous OC
- -Received TC x 6
- -Disease free >2 yrs

Presented by: Paul Haluska M.D., Ph.D.

Avatar Predictive for Platinum Response

Drug Development Example

- 1. Test Hypothesis that HR-Deficient models most sensitive to PARP inhibition
 - HR deficient vs. HR proficient
 - Genotyping: BROCA
 - Functional: RAD51 foci
 - In-vivo: Avatars

MK-4827

Niraparib: PARP1 and 2 Inhibitor

Al Hilli et al., Clin Cancer Res October 1, 2013 19:PR05

Presented by: Paul Haluska M.D., Ph.D.

Single Agent Niraparib- "HR Deficient"

Al Hilli et al., Clin Cancer Res October 1, 2013 19:PR05

BRCA wildtype CDK12 MUTATION

Single Agent Niraparib- "HR Proficient"

WILDTYPE

WILDTYPE

Al Hilli et al., Clin Cancer Res October 1, 2013 19:PR05

In-vivo Imaging: PH039 Ultrasound

Challenging DOGMA

PKC iota Expression in Avatars

Next Step:

Directing Patient Therapy

PRESENTED AT THE 2014 ASCO ANNUAL MEETING. PRESENTED DATA IS THE PROPERTY OF THE AUTHOR.

Modulation of Effective Response Rate

MC1463- Avatar Trial

-each patient's Avatar directs her own therapy

PRESENTED AT THE 2014 ASCO ANNUAL MEETING. PRESENTED DATA IS THE PROPERTY OF THE AUTHOR.

Ovarian Cancer Practice and Natural History

- Excellent tumor type for this approach
- LOTS of tumor tissue available
- High engraftment rate
 - Non-engrafters→ Do well
- Frontline treatment fairly uniform
 - Still surgery first...mostly
- Most go into remission
- Most come back, but median PFS (>20 mo) allows for model development
- No clear 'winning' standard salvage
- No clear predictive marker

Avatar Directed Therapy

- First Ovarian Trial with Xenograft-Directed Therapy
 - Enterprise wide... other US sites next?
- Truly individualize- Each woman's Avatar will help her!
- Idea: The best predictor of response... is response!
 - Genotyping too complex in most cases
 - Treatment relevant subtypes unlikely
- Do we really know our 'standard' therapies?
 - Do same patients respond to each?
 - Can we predict resistance?
 - We will be able to determine the genotype of responders to each type of chemo
 - We will also be able to determine genotype on non-responders
- Pilot SuperAvatars- Avatars w/ source patient Immune system

Conclusions

- Generating Avatars in ovarian cancer is feasible
 - High engraftment rate
 - Recapitulate patient disease
 - Histology, Biology, Molecularly, Therapeutically...
- Useful as drug development tool
 - Large number of models can sort on marker of interest
- Natural history of ovarian cancer lends well to the idea of directed therapy

@Ovatars

Acknowledgements

- Haluska Lab
 - John Weroha
 - Marc Becker
 - Krissy Butler
 - Xiaonan Hou
 - Mariam Al Hilli
 - Sue Greiner
 - Amanika Kumar
 - Piyawan Tienchaiananda
 - Alyssa Vrieze
 - Brad Evans
- Past members
 - Gretchen Glaser
 - Sara McKinstry
 - Sergio Enderica
 - Sean Harrington
 - Funding
 - NCI P50 Ovarian Cancer SPORE
 - OCRF PPDG
 - NCI R01 CA184502
 - Minnesota-Mayo Partnership

- Ovarian SPORE
 - Lynn Hartmann
 - Scott Kaufmann
 - Kim Kalli
 - Stats Group
 - Ann Oberg
 - Matt Maurer
 - Sarah (Kieran) Perkins
 - Karin Goodman
 - Marla Sommerfield
 - Susan Rogers (TRAG)
 - & Frozen section lab
 - Gyn Onc Surgeons
 - Alan Fields
 - Kah Whye Peng
 - Keith Knutson
 - Daniel Visscher

- Collaborators
 - Clare Scott
 - Elizabeth Swisher
 - Alan Fields
 - Robert Jenkins
 - Stephanie Fink
 - Larry Karnitz
 - Stuart Emanuel
 - Keith Wilcoxen
 - Beth Blackwood
 - Dan Kaufman
 - Steffi Oesterreich
- Advocates
 - Pat Haugen
 - Jane Levin

Presented by: Paul Haluska M.D., Ph.D.

Ginkgo, LLC

Genentech

Petersen Family

Tesaro

THANK YOU!

